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Winding of planar Brownian curves 
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Abstract. We compute the joint probability for a closed Brownian curve to wind n times 
around a prescribed point and to enclose a given algebraic area. An estimate from below 
of the arithmetic area is obtained. 

Since the pioneering work of Edwards [l], the study of path integrals in the presence 
of topological constraints has aroused considerable interest. On the one hand these 
techniques are of direct relevance for polymer physics while on the other hand they 
are connected with some rigorous mathematical results. Consider for instance the 
two-dimensional Brownian motion on the punctured plane P - (0). The problem of 
finding the asymptotic probability distribution of the total angle e ( t )  wound at time 
t around 0 was first addressed by Spitzer [2] who showed that X =: 2e(t)/ ln t is 
distributed according to a Cauchy law for t + +CO. This result was then extended by 
Pitman and Yor [3] to the case of n prescribed points. This question has also been 
re-examined by Rudnick and Hu [4] who showed that by removing a disc from the 
plane, instead of a point, the asymptotic distribution changes drastically from a Cauchy 
law to an exponential law (which thus leads to finite moments). Recent results of 
Belisle [ 5 ]  on the winding of a discrete random walk indeed confirm that the limiting 
law has an exponential tail. The winding number distribution was also discussed by 
Wiegel in the context of polymer entanglements [ 6 ] .  

An apparently unrelated problem concerns the probability distribution of the area 
enclosed by a planar Brownian curve. First raised by Levy [7] and solved magisterially 
by the use of Fourier-Wiener series, this problem was more recently re-examined by 
Brereton and Butler [8], Khandekar and Wiegel [ 9 ]  and Duplantier [lo]. 

The purpose of this paper is to extend this approach to the case of the joint 
probability distribution for a closed planar Brownian walk to wind n times around a 
prescribed point and enclose a given algebraic area (the initial = final point has been 
left unspecified). Interestingly enough, this quantity is related to the two-body partition 
function of a gas of particles obeying fractional statistics (anyons). 

The plan of the paper is as follows: for pedagogical reasons we first rederive 
Wiegel’s results concerning the probability 9 ( A )  for a closed planar Brownian curve 
to enclose after a time 7 a given algebraic area A. This quantity can be expressed in 
terms of the partition function of a charged particle embedded in a constant magnetic 
field. This partition function diverges as the total area of the plane but an adequate 
normalisation leads back to the finite P(A) .  We then consider the probability B,(n) 
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for the same Brownian curve to wind n times around a given point. In this case the 
correspondence involves a vortex lying at the origin and carrying a magnetic flux 4. 
Here a harmonic regulator w is needed to compute the partition function of a charged 
particle moving in the vortex field. In the limit where the regulator vanishes, one finds 
that the probability for zero winding is 1, when the regulator is infinitesimal, we will 
show that 8 ) , ( n )  behaves as l / n 2  when n is non-vanishing. We finally evaluate the 
joint probability 8,( n, A) for the Brownian curve to enclose a given area A and wind 
n times around a given point. This means computing the partition function of a charged 
particle embedded in a magnetic field superposed with a vortex field. By an appropriate 
reinterpretation of our results we then give an estimate from below the total arithmetic 
area enclosed by the curve. 

Let us first consider 8 ( A )  and review the basic material at hand. The Wiener 
integral representation of the transition probability for a random walk starting from 
r’ and ending at r” after a ‘time’ T is 

1 ( r’’ - r‘)2 
P( r”, r’) = - exp - ~ 

2 7TT 27 
r (  T )  = I ”  

= N exp( -; [: i 2 ( s )  ds) [Dr’] 
r ( O ) = r ’  

where N is a normalisation factor. In these units the average end-to-end square distance 
between r’ and r” is ([ r( T )  - r(O)]*) = 27. Now the problem is to express the probability 
for such a curve when it goes back to the starting point r ’ =  r” to enclose a given 
algebraic area A. Following Edwards, one way is to impose in the Wiener integral the 
constraint 

where k is the unit vector orthogonal to the plane. One thus gets 

xexp-  ( i i ’ ( s ) - f iA(rx i )*k)  ds  lb 
where we have used the identity 2 d ( x )  = jTz exp(iAx) dh. Invoking the usual corre- 
spondence with quantum mechanics we observe that the ‘action’ appearing in the path 
integral describes a particle of unit charge and mass moving in a constant magnetic 
field of strength + A  orthogonal to the plane. 

If we now assume that the initial point is not prescribed, i.e. that the closed Brownian 
curve can wander everywhere in the plane, the resulting probability for it to enclose 
the area A reads P(A)  =Splane  P(r’, r’, A) d2r’. In accordance with the Feynman-Kac 
formula it involves the partition function Z(A)  of a particle in a constant magnetic 
field [ 113 with ‘temperature’ 1/ kT = T,  namely 

Z(A)  
exp( -ihA) 

2T 

+X 

exp(-iAA) SA 1 +m 

= I-, dh 27r sinh(.rh/2) z’ (4) 
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As is well known the partition function diverges as the surface S of the plane (due to 
the translation invariance of the system, the degeneracy on each Landau level is 
infinite). However this problem can be handled by a proper normalisation. One gets 

F ( A ) - P ( A ) ( I * x  -x  ( 5 )  

The usual result [ 8 , 9 ]  is here recovered as the Fourier transform of the partition 
function of an electric charge in a constant magnetic field. 

We now consider the problem of the winding of a closed Brownian curve around 
a fixed point. The corresponding probability will be shown to be the Fourier transform 
of the partition function of a charged particle in a vortex field. We start from the same 
path integral transition probability P( r”, r ’ )  but impose instead a constraint expressing 
that the total angle wound at time r around 0 is 21rn. This gives 

n = - 1  1 ’  i d s  
2.rr 0 

where 8 is the polar angle between r‘ and r“ around the point 0. After inserting the 
Kronecker constraint 

we get 

P ( r t ,  r t ,  n )  = N 

The ‘action’ appearing in the path integral now describes a particle of unit charge and 
mass moving in a vortex field localised at the origin and carrying a flux r$ = - 2 ~ 5 .  
Again we are interested in a Brownian curve that can wander everywhere in the plane. 
The resulting probability for it to wind n times around the origin reads P ( n )  = 

P ( r ’ ,  r t ,  n )  d2r t  which now involves the partition function Z(5) of a particle in a 
vortex with ‘temperature’ 1/ kT = r. Thus one has 

r (  T I  = r ’  

[Dr]  exp-l: ( j i2(s)+i58)  ds. (7) s r ( O ) = r ’  

d 5  exp(i21rtn) so1 

The partition function Z(5 )  is easily shown to diverge, since the particle may wander 
everywhere in the whole plane. A suitable regularisation is to assume that the particle 
is attracted to the point 0 by a harmonic force. The corresponding Hamiltonian then 
reads 

where ut  is the orthoradial unit vector perpendicular to the radial vector r. It is 
interesting to point out that this Hamiltonian can be viewed as the two-body relative 
Hamiltonian of a system of anyons carrying both an electric charge and a magnetic 
flux and interacting with a harmonic force. As discussed in [12] where the second 
virial coefficient for an anyon gas was computed by means of this harmonic well 
regulator, the spectrum of H is ( n  and m integers, n 2 0) En,m = w(lm - (1 + 1 +2n)  
where 5 stands for the fractional part of 4 / 2 ~  (in accordance with a general result 
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of Byers and Yang [ 131, the spectrum is indeed periodic in 6 of period 1). The partition 
function reads: 

cosh( ( 1 / k T )  w ) ( 6  - f ) 
zu(6)=2 sinh((l /kT)w) sinh((l /2kT)w)'  

It follows that 

e x p ( i 2 ~ f n )  cosh rw(6-4)  Io' d6 277 2 sinh(rw) sinh(irw)' 

By a proper normalisation one finally obtains 

that reads 

(13) 

a result already obtained by Wiegel in a different way. When o is infinitesimal Pu(n) 
behaves as 

270 sinh(frw) 
cosh(frw)( r2w2+47r2n2) 9 u ( n )  = 

r2w2 
4.rr2n2 
- 

and P,,,(O) as 

r 2 w 2  

12 
1 -- 

In the limit w + 0 one thus has P(0) = 1. This result is not a surprise; it reflects the 
fact that for o = 0, the particle is no longer attached to the origin, thus a typical closed 
curve will have a vanishing winding number. The set of curves with a non-vanishing 
winding number being of zero measure, it thus follows that 9 ( 0 )  = 1. It would be 
interesting to distinguish in the n = 0 sector, curves which do not enclose the origin 
from curves which do enclose the origin but an equal number of times clockwise and 
anticlockwise. Such a distinction cannot however be reached within the scope of this 
analysis. 

Results in (14), (15) can still be given a simple interpretation if we adopt a different 
point of view. Indeed, the integration 5 d 2 r f I  . . used in calculating P (  n) means that 
we count all the closed curves that begin at every point r f  and wind n times around 
the origin. Equivalently, we can say that we consider all the closed curves beginning 
at a given fixed point, say the origin, and count all the points of the plane that are 
wound round n times by those curves. Thus, for each closed curve, we can define 
different winding sectors, each one being labelled by the winding number n of any 
point inside it. As an example, see figure 1 (notice that the 0-sector is very different 
from the others because it consists, first, of small 'islands' lying inside the envelope 
of the curve and, also in an infinite part, the rest of the plane). 

Calling S,, the arithmetic area of the n-sector, it follows that: 

lim P , ( n ) a ( S , , >  
U-0 
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Figure 1. A closed curve with its various winding sectors, the so-called n-sectors. Each 
n-sector is labelled by the winding number, n, of any point inside it. The 0-sector has an 
infinite area. 

where (, . .) means averaging over all possible closed curves of a given average length. 
Further justification of the above relationship will be given in (22)-(25). Equation (14) 
then gives, for the arithmetic area (Fin), 

It will be shown below that c = 7/27r (27). 
Of course, we observe that, for all, n # 0: 

which follows trivially from the finiteness of the average length of the curve: the area 
of the 0-sector is obviously infinite. 

To summarise the above discussion, we may adopt two different points of view. 
(i) The standard one, (12), which leads to 

lim P, ( n )  = 
W - r O  

(ii) The one of (16) which leads to finite positive quantities for all n except for 
n = 0 where we have a divergence. 

Notice that (i)  does not give any information about the Brownian curve we want 
to study. 

Now, we calculate the probability, P,( n, A )  for the curve to enclose a given algebraic 
area A and wind n times around a given point. Imposing simultaneously the constraints 
(2 )  and (6), we have to solve the problem of a charged particle moving in a vortex 
field (flux -275)  placed at the origin and a uniform magnetic field, + A ,  perpendicular 
to the plane. Moreover, we use the same harmonic well regulator as before. 

E,,,, = E ’  1 m - 61 + 2 n  + 1 - ( m  - 5 )  - 

where m and n are integers ( n  2 0), 

The energy levels [12] are given by: 

(18) ( 
A ’  

E ) = -  
2 ‘  

A’2=A2+(2u)2  
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In obvious notation, the partition function is written 

1 exp[.r(A - -A ' ) (&-  1/21/21 
sinh r ( A ' - A ) / 4  

+ 
Following the same approach as for 9,( n )  we get, N'  being a normalisation factor, 

+= 
P,(n, A) = N'  lo' d& / dA exp(i2.irtn -iAA)Z,(A, 6) 

--3i 

(20) 
= "Xu( n, A). 

The normalised probability will thus read 

where N = Z, dA X,( n, A) = (rr/sinh W T )  coth wr/2. 

( A > O , n c O )  or (A<O, n 2 O ) :  
We can calculate exactly the quantity X,(n, A).  We get the following result when 

where we have defined 

w p  = J( w r ) 2  +p2Ir2 .  

The expressions are rather lengthy for the other cases. ((A > 0, n > 0) or (A < 0, n < 0)) 
and are omitted here. Let us consider the limit o + 0. Defining 

X (  n, A) = lim X u (  n, A) 
W - 0  

we get 

(-l)m exp(-2~1Alm/r)  
m 4 n I  

+ exp( -27rnA/r)(-1)" 

if (A>O, n > 0 )  or (A<O, n < 0 )  and 

if (A > 0, n < 0) or (A < 0, n > 0). The limit A + 0 will be studied in (28), (29). 
Of course, the relationship X ( n ,  A) = X ( - n ,  - A )  holds. We can show that, for 

n # 0, the quantity X (  n, A )  is finite and positive and it becomes infinite for n = 0. This 
is in agreement with the detailed discussion given above: in particular one has 
limu+o B,(O, A) = B(A).  
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The variations of X ( n ,  A )  as a function of n are displayed in figure 2 for three 
different values of A ( = 5 ;  0.5; 0). T has been taken equal to 277 and the broken curves 
have been drawn to guide the eye. (More important than the magnitudes of those 
curves are their shapes.) First, we observe an asymmetry when A > 0: 

X ( n ,  A ) >  X ( - n ,  A )  for all n > 0. 

Moreover, for sufficiently high positive values of A (for instance, A = 5), the n = 1 
value largely dominates the others: 

(See the end of this paper (30), (31) for a detailed discussion of this particular point.) 
Finally, as IAl decreases, the asymmetry progressively disappears. Of course, for A = 0, 
the symmetry n e= - n  is recovered: 

X (  1, A )  >> X (  n, A )  for all n # 0; 1. 

X ( n ,  A )  = X ( - n ,  A )  when A = 0. 

Now, we deal with the interpretation of X ( n ,  A ) .  
Using (20), in the limit LO + 0, we can establish the following relationship: 

1 
n = - a  7 

+a 

n X ( n , A ) = - A P ( A )  ( 2 2 )  

where P ( A )  is defined in ( 5 ) .  

A . 0 . 5  T ?  

Figure 2. The (unnormalised) 'probability' X ( n ,  A )  as a function of n for three different 
values of A. We can see that the asymmetry n u - n  progressively disappears when lAl 
decreases. 
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This equation has, at the level of the partition function, the following counterpart 

where az/a&=o is defined below (23’). 
To obtain (22) we have used the following identities: 

and the expression of the derivative of the partition function: 

- - 2 s inh(~A/2)  -’ (* - ( ;A)  coth(iA)) (23’) 

(The above equation (22) has also been directly obtained from the expressions (21) 
after a rather tedious calculation!) 

Thus, following (22), we can define the new quantity: 

1 
( S ( n ,  A)) = T- P ( A )  X ( n ’  A)  

which gives 

+a: 

1 n(S(n,A))=A. 
n=-a2 

So, the interpretation of (S(n, A ) )  is very clear: this quantity is the mean value of the 
arithmetic area of the n-sector ( n  # 0), the total algebraic area enclosed by the curve 
being fixed and equal to A. 

Going further, we can calculate, A still being fixed, the average of the total arithmetic 
area enclosed by the curve (except for the 0-sector!): 

E 1 ( S ( n ,  -A)). 
n.20 

At this stage, it is worth noticing that the use of simultaneous conditions on n (winding 
number) and A (algebraic area) gives access to the arithmetic area: a rather unexpected 
result. 

Finally, averaging (S(n, A)), given in (24), over A we get: 

7 1  
( S n ) - ]  dAP(A)(S(n ,A))=-*-  2 7  n2 

leading to c = 7/27  (16). Thus, the mean area of the n-sector ( n  i;L 0) is completely 
determined. 
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To close our analysis, we consider some asymptotic behaviour of the quantities 

First, taking the limit A + 0 with some care, we obtain: 
( S ( %  A ) ) .  

which gives, when n = 1,2 ,3 ,  . . . the funny sequence of numbers (log 2 -$), (i- log 2), 
(log 2-f ) ,  . . . (we have omitted the factor l /P(O)).  Moreover, it can be shown that, 
when n+*co: 

a behaviour close to the one of ( S , }  (we recall that ( S n )  is obtained after an averaging 
over A ) .  

Now, considering the limit A +  fa, we get: 

-0 for all n # 0, 1. M n ,  A ) )  
(S(1, A ) }  A-+m 

Analogously, when A + -03, we have: 

-0 for all n # 0, -1. W n ,  A ) )  
(S(-1, A ) )  A--s  

This means that a curve of a given average length reduces to a single ring when it is 
constrained to enclose an infinite area. All this is consistent with (26). 

Indeed, we have 

from which we conclude that the arithmetic area becomes equal to the absolute value 
of the algebraic area when A +  *CO. The limit (32) is a strong indication that the 0-sector 
lies completely outside the envelope of the curve when IAl+ 03. 

To conclude, let us comment on the relation of our approach with other works. In 
all cases discussed here we have considered closed Brownian loops leaving unspecified 
the initial (final) point. This enforced us to introduce an additional drift that prevents 
the particle wandering everywhere in the plane. Another approach is to study the joint 
law of the area and the winding number with prescribed initial and final points. The 
generating function of this conditional law has been discovered by Pitman and Yor 
[14] (see also [15]).  A rederivation of their result within our approach requires the 
knowledge of the spectrum (eigenstates and eigenvalues) of a charged particle moving 
in a vortex and a constant magnetic field. Equation [ 2 n ]  in [14] giving the generating 
function then comes out quite simply by using appropriate series of generalised 
Laguerre polynomials. 
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